3x^2+4x-9=2x^2-5

Simple and best practice solution for 3x^2+4x-9=2x^2-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+4x-9=2x^2-5 equation:



3x^2+4x-9=2x^2-5
We move all terms to the left:
3x^2+4x-9-(2x^2-5)=0
We get rid of parentheses
3x^2-2x^2+4x+5-9=0
We add all the numbers together, and all the variables
x^2+4x-4=0
a = 1; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*1}=\frac{-4-4\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*1}=\frac{-4+4\sqrt{2}}{2} $

See similar equations:

| 5b+5(b-7)=2b-19 | | -4h+3=-4+3h | | 6=q-4 | | 5a+3=8a-3 | | x+(3x+4)2=24 | | 6x+3+6x=11x+5 | | 3(8n+4)=-204 | | 4+7j=-5j-8 | | 9x^2-7x-16=0 | | 2x-236=-14x+84 | | j-874=49 | | -2=u/1 | | 6(7p-6)=132 | | 77x+28=21x^2 | | 14h=616 | | x+1234+(x×x×x)=84681+3*(123) | | -2p=-p-10 | | -5(2-x)=-10+5 | | y-8/18=y+4/12 | | 130=x+18/100x | | 8p-6p=12 | | -10+3g=-7g | | (3x-6)/3=(2-4x)/2 | | 10v/5=-30 | | s-1=45 | | 3(7x-7)=48 | | 3/2x^2-7/4x=5/4 | | 63=-9h | | 8-5a+6=-1 | | x+1234×(x×x×x)=84681×3×(123) | | 10v/5=30 | | -1=g-11 |

Equations solver categories